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ABSTRACT: Experiments using a mechanically controlled break
junction and calculations based on density functional theory
demonstrate a new magic ratio rule (MRR) that captures the
contribution of connectivity to the electrical conductance of
graphene-like aromatic molecules. When one electrode is connected
to a site i and the other is connected to a site i′ of a particular
molecule, we assign the molecule a “magic integer” Mii′. Two
molecules with the same aromatic core but different pairs of electrode
connection sites (i,i′ and j,j′, respectively) possess different magic
integers Mii′ and Mjj′. On the basis of connectivity alone, we predict
that when the coupling to electrodes is weak and the Fermi energy of the electrodes lies close to the center of the HOMO−
LUMO gap, the ratio of their conductances is equal to (Mii′/Mjj′)

2. The MRR is exact for a tight-binding representation of a
molecule and a qualitative guide for real molecules.

■ INTRODUCTION

Charge transport through polycyclic aromatic hydrocarbons
(PAHs) has attracted intensive attention in recent years,1,2

partly because of their role in the design and development of
molecular electronic devices.3−6 Since PAHs are well-defined
and defect-free, they also provide model systems for under-
standing transport in graphene (treated as an infinite alternant
PAH) and graphene-based nanostructures.7−9 When a single
molecule is connected to metallic electrodes, electrons passing
through the molecule from one electrode to the other can
remain phase-coherent, even at room temperature.10,11 This has
led to a great deal of discussion about the role of quantum
interference (QI) in determining the electrical conductance of
single molecules,12−21 culminating in a series of recent
experiments revealing room-temperature signatures of QI.22−30

Both experiment and theory have focused primarily on
elucidating the conditions for the appearance of constructive or
destructive interference. In the simplest case, where electrons
are injected at the Fermi energy (EF) of the electrodes,
constructive QI arises when EF coincides with a delocalized
energy level of the molecule (En). Similarly, a simple form of
destructive QI occurs when EF coincides with the energy of a
bound state located on a pendant moiety (Eb).

31,32 In practice,
unless the energy levels are tuned by electrostatic, electro-
chemical, or mechanical gating, molecules located within a
junction rarely exhibit these types of QI because EF is usually
located in the HOMO−LUMO (H−L) gap. For this reason,
discussions have often focused on conditions for destructive or
constructive QI when EF is located at the center of the H−L
gap. For the purpose of identifying conditions for destructive

QI within the delocalized π system, a useful conceptual
approach is to represent molecules by lattices of connected sites
(C(sp2) atoms), such as those shown in Figure 1, in which (a)
represents a benzene ring, (b) represents naphthalene, (c)
represents anthracene, and (d) represents anthanthrene. Such
abstractions highlight the role of connectivity in determining
the presence or absence of destructive QI. For example, the
lattices of Figure 1 are bipartite, being composed of equal
numbers of “primed” and “unprimed” sites, such that primed
sites (labeled by primed integers, e.g., 1′, 2′, 3′) are connected
only to unprimed sites (labeled by nonprimed integers, e.g., 1,
2, 3) and vice versa. It is well-known33−38 (see Mathematical
Methods below) that if electrodes are connected to two sites
that are both primed or both unprimed, then destructive
interference occurs and the contribution from the π orbitals to
the electrical conductance (G) vanishes. For a phenyl ring, this
corresponds to the well-known case of meta-coupled electro-
des,31 but more generally it holds for any bipartite lattice.
Studies of such lattices have yielded a variety of simple rules

for the appearance of destructive QI,21,32−37 for which the π-
orbital contribution to G vanishes. The aim of the present
paper is to elucidate a simple rule for determining the nonzero
values of electrical conductance arising from constructive QI in
aromatic molecules. At first sight, this task seems rather
daunting, because there is only one conductance (i.e., G = 0)
when QI is destructive, whereas there are many possible
nonzero values of G when QI is constructive. Furthermore, the
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nonzero values of the conductance in the presence of
constructive QI depend on the strength and detailed nature
of the contacts to the electrodes.
Remarkably, in what follows we demonstrate a “magic ratio

rule” (MRR) based on tables of quantum numbers Mii′ that
capture the contribution of connectivity to the electrical
conductance of graphene-like aromatic molecules, or molecules
with graphene-like cores, when one electrode is connected to
an “unprimed” site i and the other is connected to a “primed”
site i′. In particle physics, quantum numbers such as “charm”
and “color” are assigned to elementary particles. In the case of
lattices such as those in Figure 1, we refer to these new
quantum numbers Mii′ as “magic integers” (MIs). For each of
the molecules shown in Figure 1, the allowed values of |Mii′| are
shown beneath each lattice. Clearly, the spectrum of MIs
increases with the size of the aromatic core. The precise values
of Mii′ are not trivial, since for example Mii′ = 5 is missing from
the set of anthanthrene MIs.

■ RESULTS AND DISCUSSION

MIs capture the complexity of interference patterns created by
electrons at the center of the H−L gap and allow the prediction
of conductance ratios via the MRR, which states that “the ratio
of conductances of two molecules is equal to the square of the
ratio of their magic integers.” Clearly, when comparing
conductances of the same aromatic core but different contacts,
the signs of the MIs are irrelevant. This rule is derived in
Mathematical Methods. To each lattice such as those in Figure
1, the quantum numbers Mii′ form a table of MIs, which we call
an M-table. As shown in the Supporting Information (SI), for
the benzene ring (Figure 1a) this is a 3 × 3 table with all of the
entries equal to ±1, so |Mii′| = 1 is the only possibility.
Therefore, as expected, para (i.e., 3,1′) or ortho (3,2′ or 3,3′)
connectivities yield the same electrical conductances. For the
naphthalene lattice (Figure 1b), the 5 × 5 M-table is shown in
Table 1. As expected from symmetry, this table shows that the
conductances associated with contact sites 1,1′ and 5,5′ are
equal and proportional to (2)2 = 4. It also shows that the
conductance with contact sites 4,2′ or 4,3′ would have the same
value, which is a less obvious result.
The MRR is an exact formula for conductance ratios of tight-

binding representations of molecules in the weak-coupling
limit, when the Fermi energy is located at the center of the H−
L gap. It does not depend on the size of the H−L gap and is
independent of asymmetries in the contacts. In what follows,
we explore the real-life implications of the MRR by evaluating
the conductance ratio of two molecules both experimentally
and using density functional theory (DFT) combined with
nonequilibrium Green’s functions (NEGF).

To aid the experimental investigation of the MRR, it is
helpful to select two molecules exhibiting constructive QI with
very different values of Mii′, and therefore, on the basis of the
M-table shown in Table 2, we compared the conductance of

molecule 1, derived from an anthanthrene core as shown in
Scheme 1 and having an MI of M15′ = −1, with that of the
corresponding molecule 2, for which M72′ = −9. Thus, the
MRR prediction is that the electrical conductance of the core of
2 should be (9)2 = 81 times higher than that of the core of 1.
Below we demonstrate that even though 1 and 2 differ from the
idealization of Figure 1d, this ratio is reflected in mechanically
controllable break junction (MCBJ) measurements of their

Figure 1. Four examples of bipartite lattices, with the magnitudes of their magic numbers shown underneath each lattice: (a) benzene, (b)
naphthalene, (c) anthracene, and (d) anthanthrene.

Table 1. M-Table of MIs Mii′ for the Naphthalene Lattice in
Figure 1ba

aIt should be noted that in all of the M-tables, the first (row) index is
unprimed and the second (column) index is primed.

Table 2. M-Table for the Anthanthrene Lattice in Figure 1d
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conductances, which reveal that the single-molecule con-
ductance of short-axis-contacted anthanthrene 2 is approx-
imately 79 times higher than that of its long-axis-contacted
analogue 1.
Anthanthrene is the compact dibenzo[def,mno]chrysene

molecule, which, together with its angular counterpart dibenzo-
[b,def ]chrysene, represents a promising building block for
many applications in the field of organic electronic materi-
als.39−41 Advantageously, what sets these prototypical nonlinear
PAHs apart from the linearly fused acenes, such as anthracene
and pentacene, is the enhanced stability toward degradative
chemical reactions and photooxidation.42−44 The synthetic
approach to the two novel pyridine-terminated anthanthrene
derivatives 1 and 2 shown in Scheme 1 is reported in the SI. To
measure their single-molecule electrical conductances, we
employed an MCBJ setup capable of operating in solution. In
an MCBJ experiment, molecular junctions are formed by
opening and closing a nanogap between two gold electrodes.
For further details of conductance measurements, the reader is
referred to our previous publications.22,45,46

Figure 2a displays typical conductance (G) versus distance
(Δz) stretching traces (plotted on a semilogarithmic scale)
recorded for 0.1 mM 1 and 2 in a solution of mesitylene and
THF (4:1 v/v) using the MCBJ technique. For reference, we
have also plotted two traces representing the molecule-free
solution (black curves), which reveal classical tunneling
characteristics, i.e., an exponential decrease in the conductance
upon junction elongation. After the Au−Au contacts break, the
formation of molecular junctions is signaled by the presence of
additional plateaus in the range 10−3G0 ≥ G ≥ 10−7.0G0 (where
G0 = 2e2/h is the quantum of conductance). Typically 1000
individual G versus Δz traces were recorded for both 1 and 2
and analyzed further by constructing all-data-point histograms
without any data selection (as shown in Figure 2b) to extract
statistically significant results from the different junction
configurations. The prominent peaks between 10−7G0 and
10−4G0 represent molecular junction features. The statistically
most probable conductance of each molecular junction is
obtained by fitting Gaussians to the characteristic maxima in the

one-dimensional (1D) conductance histograms. As shown in
Figure 2b, the most probable conductance for the anthanthrene
molecules is 10−4.6G0 for 2 and 10−6.1G0 for 1, indicating that
the conductance of molecule 2 is a factor of 32 higher than the
conductance of 1. However, it should be noted that the most
probable conductance results from the molecular conductances
associated with different contact configurations and a variety of
electrode separations. To facilitate comparison with theory, it is
of interest to explore the molecular conductances through fully
stretched junctions, for which contact occurs via the pyridyl
groups. Quantitative analyses of 2D histograms (Figure 2c,d)
reveal the evolution of molecular orientations and junction
configurations during the stretching process.
The statistically averaged conductance−distance traces44

(Figure 2c,d) exhibit “through-space” tunneling at the
beginning of the stretching process (<0.3 nm) and then a
clear molecular plateau with slightly different conductance
decays for the two molecules. The analysis of stability and
junction formation probability was performed by constructing
the stretching distance distributions44 shown in the insets of
Figure 2c,d. The single-peak distribution suggests that the
junction formation probability of the anthanthrene-based
molecules could reach up to ∼100%. The single maximum in
the plateau−length histogram represents the most probable
relative characteristic stretching distance, Δz* = 1.7 nm for 1
and 1.5 nm for 2.
The most probable absolute displacement z* in an

experimental molecular junction formed between two gold
tips is obtained by adding the snap-back distance (Δzcorr) to the
relative displacement: z* = Δz* + Δzcorr. With Δzcorr = 0.5 ±
0.1 nm, the z* values are estimated to be 2.2 nm for 1 and 2.0
nm for 2, which are quite close to the corresponding molecular
lengths, suggesting that both molecules can be fully stretched
during the break junction measurement. Thus, the con-

Scheme 1. Structures of the Two Molecules Studied
Experimentally, Each with the Anthanthrene Core;
Following the Numbering Convention in Figure 1d, 1 is
Long-Axis-Contacted with Connection Sites 1,5′ and 2 is
Short-Axis-Contacted with Connection Sites 7,2′

Figure 2. (a) Individual conductance−distance traces for 1 (red) and
2 (blue) using THF/mesitylene. (b) Conductance histograms for 1
(red) and 2 (blue). The sharp peak around 10−7.5G0 is attributed to
the noise limit of our MCBJ setup under the current experimental
conditions. (c, d) 2D conductance histograms for (c) 1 and (d) 2. In
each histogram, statistically averaged conductance−distance traces
(circles) with variations indicated by the standard deviations (bars) are
shown, along with the linear fit (line).44 The solid circle represents the
last data point in the linear fit before junction rupture, and the solid
error bar was determined from the Gaussian fit of the log G peak of
the last data point.44 Insets: Stretching distance distributions
determined (c) from 0.1G0 to 10−7G0 and (d) from 0.1G0 to 10−5.9G0.
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ductances of the fully stretched molecular junctions for
molecules 1 and 2 are determined to be 10−6.7±0.7G0 (solid
red circle in Figure 2c) and 10−4.8±0.6G0 (solid blue circle in
Figure 2d), respectively, giving a conductance ratio of ∼79,
which is in good agreement with the MRR. To further
investigate the accuracy of the MRR and to elucidate the origins
of deviations from the rule, we performed DFT-based
calculations of T(E), the transmission coefficient for electrons
of energy E to pass from one electrode to the other, from which
the zero-temperature electrical conductance is given by the
Landauer formula G = G0T(EF) and the room-temperature
conductance is obtained by integration over E of T(E)
weighted by the derivative of the Fermi function (see
Computational Methods).
Clearly, the anthanthrene cores of molecules 1 and 2 do not

directly contact the electrodes but instead make indirect
contact via the pyridyl rings and acetylene linkers. Therefore, as
an initial step, we computed the electrical conductances of
anthanthrene cores in direct contact with the gold electrodes
(Figure 3a). When the left and right electrodes are connected

to atoms i,i′ = 1,5′ respectively, this resembles the core of
molecule 1. Similarly, the structure connected via i,i′ = 7,2′
resembles the core of molecule 2. Figure 3b shows the
conductances of the anthanthrenes with 1,5′ (red curve) and
7,2′ (blue curve) connectivities obtained from a DFT-NEGF
calculation in the weak-coupling limit (when the gold−carbon
distance is 2.4 Å). It is well-known that the value of the Fermi
energy predicted by DFT (i.e., EF

0 = 0 in Figure 3b) is not
necessarily reliable, and therefore, it was of interest to evaluate
the conductance ratio for various values of EF. From Figure 3b
we find that in the range 0.2 < EF < 0.4 eV the conductance
ratio varies between 69 and 88 and that a conductance ratio of
81 is obtained at EF = 0.331 eV.
For the complete molecules measured experimentally, Figure

4c,d shows the logarithms of G/G0 at zero and room
temperature, respectively, for molecule 1 (red solid line) and
2 (blue solid line) as functions of the Fermi energy EF. Since
DFT does not yield the correct H−L gap, spectral adjustment
has been employed on the basis of the experimental values of
the H−L gaps.47 As expected, Figure 4 shows that the value of
the conductance ratio depends on the location of the Fermi

energy, but whatever value is chosen within the H−L gap, the
conductance of 2 is much greater than that of 1, in agreement
with the MRR trend. Indeed for a value of EF = −0.33 eV, the
conductance of molecule 2 (10−4.98 G0) is 81 times higher than
that of molecule 1 (10−6.9 G0).
Beyond the molecules investigated above, we also examined

conductance ratios of naphthalene and anthracene cores
obtained from the experiments reported in ref 26. For
naphthalene with 5,1′ and 3,5′ connectivities (molecules 4
and 6 in ref 26) conductances of 20.8 and 4.1 nS were reported,
respectively, yielding a measured conductance ratio of 5.1.
From Table 1, the MIs of these molecules are 2 and −1
respectively, yielding an MRR-predicted ratio of 4, which is in
good agreement with the experimental ratio. For anthracene
with 6,2′ and 4,7′ connectivities (molecules 5 and 7 in ref 26),
conductances of 36.8 and 3.6 nS were reported, respectively,
yielding a measured conductance ratio of 10.2. From the
anthracene M-table presented in the SI, the MIs of these
molecules are 4 and 1 respectively, yielding an MRR-predicted
ratio of 16, which also captures the trend of the experimental
ratio. In this case slight disagreements may arise because the
conductance values in ref 26 include configurations in which
contact is made directly with the core rather than only through
the terminal anchor groups.

■ CONCLUSION

We have identified a new magic ratio rule (MRR) that captures
the contribution of the connectivity to the conductance ratios
of graphene-like cores when the coupling to the electrodes is
weak and the Fermi energy coincides with the center of the
HOMO−LUMO gap. The MRR is simple to implement and
exact for a tight-binding bipartite lattice of identical sites with
identical couplings when the Fermi energy is located at the gap
center and the number of primed sites is equal to the number
of unprimed sites. It states that the connectivity-driven
conductance ratio is simply the square of the ratio of two
“magic integers” whose values depend only on the
connectivities to the electrodes. On the basis of their magic
integers alone, the MRR predicts that the conductance of 2 is a
factor of 81 higher than that of 1, which is in good agreement
with trends obtained from both experiment and DFT
calculations. Literature values of conductances for naphthalene
and anthracene26 also reveal that the MRR predicts
conductance trends for these molecules. This demonstrates
that connectivity is a useful starting point for designing single-
molecule junctions with desirable electrical properties. As an
example of such design considerations, for the purpose of
connecting molecules to a source or drain electrode, a high
conductance is desirable. On the other hand, for the purpose of
connecting to an electrostatic gate, a low conductance is needed
to avoid leakage currents. Our study suggests that both features
can be obtained using the same molecule provided the
connectivities are selected with high and low MIs for source/
drain and gate electrodes, respectively.

■ COMPUTATIONAL METHODS
DFT Calculations. The optimized geometry and ground-state

Hamiltonian and overlap matrix elements of each structure were self-
consistently obtained using the SIESTA48 implementation of DFT.
SIESTA employs norm-conserving pseudopotentials to account for the
core electrons and linear combinations of atomic orbitals to construct
the valence states. The generalized gradient approximation (GGA) of
the exchange and correlation functional was used with the Perdew−

Figure 3. (a) Anthanthrene cores connected to gold electrodes via
(left) the 1 and 5′ atoms and (right) the 7 and 2′ atoms. (b)
Conductances of the anthanthrenes with 1,5′ (red curve) and 7,2′
(blue curve) cores obtained from DFT-NEGF calculations.
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Burke−Ernzerhof parametrization (PBE)49 a double-ζ polarized
(DZP) basis set, and a real-space grid defined with an equivalent
energy cutoff of 250 Ry. The geometry optimization for each structure
was performed until the forces were smaller than 10 meV/Å.
Transport Calculations. The mean-field Hamiltonian obtained

from the converged DFT calculation or a tight-binding Hamiltonian
(using a single orbital energy site per atom with Hückel para-
metrization) was combined with our homemade implementation of
the nonequilibrium Green’s function method, GOLLUM,50 to
calculate the phase-coherent elastic scattering properties of each
system, consisting of left (source) and right (drain) gold leads and the
scattering region (molecule 1 or 2). T(E), the transmission coefficient
for electrons of energy E to pass from the source to the drain, was
calculated via the relation

= Γ Γ †T E E G E E G E( ) Tr[ ( ) ( ) ( ) ( )]R
R

L
R

in which ΓL,R(E) = i[ΣL,R(E) − ΣL,R
† (E)] describes the level broadening

due to the coupling between the left (L) or right (R) electrode and the
central scattering region, ΣL(E) and ΣR(E) are the retarded self-
energies associated with these couplings, and GR = (ES − H − ΣL −
ΣR)

−1 is the retarded Green’s function, where H is the Hamiltonian
and S is the overlap matrix. From the obtained transmission coefficient
T(E), the conductance was calculated using the Landauer formula G =
G0 ∫ dE T(E)(−∂f/∂E), in which f is the Fermi function and G0 = 2e2/
h is the conductance quantum.

■ MATHEMATICAL METHODS
The following derivation of the MRR involves proving the three “ratio
rules” given in eqs 1−3 stated below. Figure 5a shows an example of a
structure of interest comprising a central region (2) connected by
single atoms i and j to moieties on the left (1) and right (3). As noted
in ref 31, the Green’s function Ĝij(E) connecting sites i and j of the
structure in Figure 5a is proportional to the de Broglie wave amplitude
at j created by an incoming electron at i, and the transmission
coefficient Tij(E) is proportional to |Ĝij(E)|

2. Consequently, the ratio
of the two transmission coefficients corresponding to connectivities i,j
and l,m is given by the following generalized ratio rule (GRR):

= | ̂ | | ̂ |T E T E G E G E( )/ ( ) ( ) / ( )ij lm ij lm
2 2

(1)

This ratio does not depend on details of the electrodes or anchor
groups provided that these are identical for the two connectivities.
Furthermore, if the couplings to the moieties on the left and right

are sufficiently weak and E does not coincide with an eigenvalue of the
isolated central region 2, Ĝij(E) ≈ gîj(E), where gîj(E) is the Green’s

function of the isolated central region. In this case, the ratio of the two
transmission coefficients is given by the following weakly-coupled ratio
rule (WRR):

= | ̂ | | ̂ |T E T E g E g E( )/ ( ) ( ) / ( )ij lm ij lm
2 2

(2)

Finally, if E is located at the center of the H−L gap (i.e., if E = EF =
0), then for a bipartite lattice of identical sites with equal numbers of
primed and unprimed sites that is described by a tight-binding model,
gîj(0) ≈ (−1/d)Mij. Hence, the ratio of the two transmission
coefficients corresponding to connectivities i,j and l,m is given by
the following magic ratio rule (MRR):

=T T M M(0)/ (0) ( / )ij lm ij lm
2

(3)

The derivation of these ratio rules starts with the observation that
the structure in Figure 5a is mathematically equivalent to the three-
component system in Figure 5b, in which the central region 2 is
connected to components 1 and 3, which at large distances from 2 take

Figure 4. (a, b) Structures of (a) 1 and (b) 2 when the electrodes are connected to the nitrogen atoms of the pyridyl anchor groups. (c, d)
Conductances of molecules 1 (red) and 2 (blue) at (c) zero temperature and (d) room temperature as functions of the predicted DFT gap from the
Kohn−Sham mean-field Hamiltonian with spectral adjustments based on the experimental H−L gaps.

Figure 5. (a) Physical realization of a central moiety with sites i and j
connected to current-carrying bonds that in turn are connected to
anchor groups and external electrodes. (b) Mathematical abstraction
of such a system, in which an “inner world” (2) is connected to an
“outer world” (1 and 3) by coupling matrices h12 and h23.
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the form of crystalline periodic leads that extend to −∞ and +∞,
respectively. Conceptually, when the coupling matrices h12 and h23 for
coupling of 2 to these regions are set to zero, such a structure consists
of a “closed inner world” (i.e., an inner vector space) 2, whose Green’s
function g22 (for real E) is Hermitian, connected to an open “outer
world” composed of 1 and 3, whose Green’s function is non-
Hermitian.51

When the coupling matrices are nonzero, the transmission
coefficient Tij(E) from 1 to 3 is obtained from the Green’s function
G31 connecting orbitals on electrode atoms of 1 to orbitals on
electrode atoms of 3. In fact, at large distances from 2, where G31 can
be projected onto scattering channels |n3⟩ and |n1⟩ of the crystalline
leads of 3 and 1, the transmission coefficient can be written51

∑=T E T E( ) ( )ij
n n

n n
,1 3

1 3
(4)

where Tn1n3(E) = Vn1Vn3|⟨n3|G31|n1⟩|
2, in which Vn1 and Vn3 are the

group velocities of electrons in channels |n1⟩ and |n3⟩. (As noted in ref
51, this expression is mathematically equivalent to the formula Tij(E) =
4Tr{Γ1G22Γ3G22

† }, where G22 is the Green’s function of region 2 in the
presence of couplings to regions 1 and 3.)
When h12 = 0 and h23 = 0, we denote the Green’s functions of

components 1, 2, and 3 by g11, g22, and g33, respectively. Then Dyson’s
equation yields

=G g h G h g31 33 32 22 21 11 (5)

where

= − Σ− −G g( )22 22
1 1

(6)

or equivalently

= + ΣG g g G22 22 22 22 (7)

in which Σ = Σ1 + Σ3, where Σ1 = h21g11h12 and Σ3 = h23g33h32.
So far the analysis has been rather general. We now consider the

case where 1 is coupled only to a single orbital |i⟩ in 2 and 3 is coupled
to only a single orbital |j⟩ in 2. (More generally, |i⟩ and |j⟩ could be
arbitrary vectors in the inner vector space.) This situation is described
by coupling matrices of the form h21 = |W1⟩⟨i| and h32 = |W3⟩⟨j|, where
|W1⟩ (|W3⟩) is a vector of matrix elements in the space of 1 (3)
describing the coupling of |i⟩ (|j⟩) to orbitals in 1 (3). In this case,

σ σΣ = | ⟩⟨ | + | ⟩⟨ |i i j j1 3

where

σ = ⟨ | | ⟩ =W g W l( 1 or 3)l l ll l

Writing

̂ = ⟨ | | ⟩G i G jij 22

̂ = ⟨ | | ⟩g i g jij 22

̂ =
̂ ̂

̂ ̂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟G

G G

G G

ii ij

ji jj

and

̂ =
̂ ̂

̂ ̂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟g

g g

g g

ii ij

ji jj

yields from eq 7

σ̂ = ̂ + ̂ ̂G g g G (8)

where the self-energy matrix σ is given by

σ
σ

σ
=

⎛
⎝⎜

⎞
⎠⎟

0

0
1

3

Hence

σ̂ = ̂ − ̂ −G g g(1 ) 1
(9)

Similarly, eq 5 yields

= | ⟩ ̂ ⟨ |G g W G W gij31 33 3 1 11 (10)

This expression shows that all elements of the matrix G31 are
proportional to the single number Ĝij. Hence, from eq 4,

= | ̂ |T E L E G( ) ( )ij ij
2

(11)

which proves the GRR of eq 1
In eq 11, the constant of proportionality L(E) = ∑n1,n3Vn1Vn3|⟨n3|g33|

W3⟩Ĝij⟨W1|g11|n1⟩|
2 is independent of the choice of i,j. Furthermore, in

eq 9, g ̂ is independent of the couplings |W1⟩ and |W3⟩. On the other
hand, the self-energies σ1 and σ3 do depend on the couplings and on
i,j. However, these vanish in the weak-coupling limit, and therefore, for
sufficiently weak couplings it is safe to neglect the product σg ̂ in eq 9,
provided that g ̂ is finite. Since g ̂ is the Green’s function of the isolated
region 2, which diverges when E coincides with an eigenvalue of 2, this
condition requires that E should lie in an energy gap of 2. (It is
interesting to note that this is the opposite of the condition for
applicability of the Breit−Wigner formula for resonant transmission,
which requires that E should be close to an energy level of 2.) When
these conditions are satisfied, Ĝij(E) ≈ gîj(E), and the WRR of eq 2 is
obtained. The WRR can be utilized by noting that g22(E) = (E − H)−1,
where H is the Hamiltonian for the isolated region 2. The WRR is
generally valid whenever σg ̂ can be neglected compared with unity.
Physically this means that if δ is the smaller of |EF − EHOMO| and |EF −
ELUMO|, then the level broadening Γ should be much less than δ (i.e.,
Γ/δ ≪ 1).

The MRR of eq 3 follows from the fact that if region 2 is a bipartite
lattice, then the Hamiltonian H for the isolated region 2 is of the form

=
⎛
⎝⎜

⎞
⎠⎟H

C

C

0

0t (12)

To obtain the transmission coefficient at the center of the HOMO−
LUMO gap, we evaluate the associated Green’s function at E = 0,
which yields

= −⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝⎜

⎞
⎠⎟g

d
M

M
(0)

1 0
022

t

(13)

where d is the determinant of C and the matrix of MIs M is the
transpose of the cofactor matrix of C. Since the ratio of two matrix
elements of g22(0) does not involve d, this completes the derivation of
the MRR of eq 3.

The condition that g22(0) is finite requires that d should not vanish.
It is clear that d = 0 when the rows or columns of C are linearly
dependent, which occurs when C is not a square matrix, i.e., when the
number of primed sites is not equal to the number of unprimed sites.
In this case, a transmission resonance occurs at E = 0, and the Breit−
Wigner formula should be used. For this reason, the MRR is restricted
to bipartite lattices of identical atoms with equal numbers of primed
and unprimed atoms. If this condition is not satisfied, then for nonzero
energies the WRR should be used.

Since the upper left (lower right) block of g22 corresponds to matrix
elements between primed and primed (unprimed and unprimed) sites,
the conductance vanishes when both electrodes are connected to
primed sites only or unprimed sites only. For this reason, in addition
to the nontrivial MIs shown in the M-tables, we assign an MI of zero
to connectivities between primed and primed sites and between
unprimed and unprimed sites.

The above derivation also reveals that in addition to the MIs, each
lattice possesses a second integer d. To each magic integer Mii′ we
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assign a magic number (MN) defined by mii′ = Mii′/d. These MNs
allow the prediction of conductance ratios of molecules with different
central cores via a related MRR, which states that “the ratio of
conductances of two molecules is equal to the square of the ratio of
their magic numbers.”
Finally, it is worth noting that knowledge of Tij(E) at E = 0 is

particularly useful for bipartite lattices because g22(E) is symmetric
about E = 0, so in the weak-coupling limit Tij(E) will have a maximum
or minimum (depending on the sign of the MI) at E = 0. Therefore, at
E = 0, dTij(E)/dE = 0 and Tij(E) varies slowly with E. Finally, we note
that magic numbers are a useful concept for nonbipartite lattices of
identical atoms provided that det H is nonzero. In this case, MIs are
obtained by equating H to a connectivity matrix that contains unit
matrix elements Hij = 1 between connected sites i and j only and
defining M = (det H)H−1. However, in this case the spectrum is not
necessarily symmetric about the gap center and Tij(E) will not
necessarily be either a maximum or a minimum at E = 0.
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